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We construct several bounds on renormalization constants and on the asymptotic behavior of propagation 
functions and vertices. The inputs are experimental measurements and/or analyticity properties of vertex 
functions. We also discuss the connection between zeros in propagators, poles in vertex functions, and the 
values of coupling constants. This is the problem studied by Geshkenbein and Ioffe and by Meiman, and we 
discuss the possible physical significance of such zeros in terms of an extended Lee model. In particular we 
argue on the basis of this model and the scattering amplitude derived from it that there is no reason to 
exclude the existence of zeros in the propagator. This negates the arguments given for bounding the coupling 
constants in field theory. 

I. INTRODUCTION 

SPECTRAL representations for propagators and form 
factors have been constructed in field theory start

ing either from the general axioms or from a Feynman 
graph series. However, their limiting behaviors for large 
momenta (subtraction constants) and the magnitudes 
of the renormalization constants are subjects of con
siderable conjecture. In this paper we construct several 
bounds on renormalization constants and on the asymp
totic behavior of propagation functions and vertices. 
The inputs are experimental measurements and/or 
analyticity properties of vertex functions. 

The paper is organized as follows: In Sec. II we first 
consider the photon propagator and prove that if there 
is no subtraction term, then the Pauli form factor of the 
proton, F^{q2), must vanish more rapidly than (lng2)-172 

for time-like #2—><*>. The requirement of no subtrac
tions is necessary if electrodynamics is to predict the 
observed vacuum polarization contribution to the Lamb 
shift and other precision measurements without re-
quring the introduction of new parameters. In Sec. I l l 
we extend techniques, developed by Meiman and 
Geshkenbein and Ioffe in a different but related study, 
to construct a lower bound rigorous to all orders of the 
strong interactions on the pionic contribution to the 
photon's vacuum polarization. With these same tech
niques, a rigorous bound on the nucleon wave function 
renormalization due to strong interactions Z% and on the 
nucleon propagator for space-like momenta is con
structed in Sec. IV. Bounds which can be constructed 
only after making assumptions on the continuation of 
amplitudes below physical thresholds are also given 
for the pion propagator in Sec. V. Finally in Sec. VI, 
we discuss the connection between zeros in propagators, 

* Supported by the U. S. Atomic Energy Commission and by 
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poles in vertex functions and values of coupling con
stants. This is the problem solved by Geshkenbein and 
Ioffe, and we discuss the possible physical significance of 
such zeros. An extension of the Lee model to include in 
addition an unstable particle field provides a model in 
terms of which to illustrate these ideas. In particular 
we argue on the basis of this model and the scattering 
amplitude derived from it that there is no reason to 
exclude the existence of zeros in the propagator. This 
negates the arguments given for bounding the coupling 
constants in field theory. 

II. ASYMPTOTIC BEHAVIOR OF NUCLEON 
ELECTROMAGNETIC FORM FACTORS 

The recently reported experiment1 on proton-anti-
proton annihilation to an electron-positron pair focuses 
attention on the behavior of the nucleon electromagnetic 
form factors F-Sff) and F^icf) for time-like momentum 
transfers q2> 4cM2. Previously, electron scattering experi
ments have measured Ft and F% for increasingly large 
spacelike momentum transfers g2<0. Analysis of these 
form factors with dispersion theory has related the ob
served structures to resonances in two and three pion sys
tems (viz., p, co,<p) located in the unphysical region 0<q2 

<4M2 below the nucleon-antinucleon threshold. Now 
with the success of the experimental study at CERN1 and 
with the realistic prospect that electron-positron storage 
rings in the near future will permit study of Fi and JF2 

for larger and larger q2>£M2, we look for the possibility 
of drawing general conclusions on the behavior of these 
form factors from the structure of field theory. One such 
result, reported earlier,2 was that a finite value for the 
charge renormalization constant Z3~1=(eo/e)2 requires 
both the Dirac form factor Fi{q2) and the Pauli form fac
tor Fi{q2) to vanish at g2= co. Zf1 is not a physical ob-

1 M. Conversi, T. Massam, Th. Muller, and A. Zichichi, Phys. 
Letters 5, 195 (1963). 

2 S. D. Drell and F. Zachariasen, Phys. Rev. 119, 463 (1960). 
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servable and this condition that Zf1 is finite has no 
direct experimental test. In this paper we derive a new 
conclusion on F2 from the observable vacuum polariza
tion. We show below that F%(q2) must vanish at q2— 00 if 
the excellent experimental agreement of the calculated 
vacuum polarization contributions to the Lamb shift 
and to the g—2 values for electrons and muons is to be 
a triumph of quantum electrodynamics, and not just 
an accident. Conditions on the asymptotic behavior of 
the form factors of the presumed charged vector bosons 
W± as well as of other particles or resonances as q2 —»<*> 
are also summarized. 

In reporting these results we recognize their limited 
value since the energy region which must be probed be
fore "asymptotic conditions" prevail is almost always 
beyond the range of practicable experiments. Con
clusions derived from such arguments are to be viewed 
primarily as of interest in principle rather than in 
practice. 

In a different approach based only on physical argu
ments and without a formal theoretical basis, Sachs3 

has suggested stronger conditions on the asymptotic 
behaviors of .F\ and F2 for large q2. 

The photon spectral form was first constructed by 
Kallen4 in 1952. We write it 

DF'{q\ p=-gJ —I- / 
U 2 J0 

* w(a2)da2 

0 q2 — a2 J 
•=+gMq2), (1) 

where Dp'iq)^ is the complete renormalized propagator, 
except for irrelevant gauge terms proportional to mo
mentum gM. The spectral amplitude ir(a2) is a real, posi
tive, gauge-independent scalar, and related to the re-
normalized electromagnetic-current operator j by 

1 
* V ) = - E(27r ) 3 5 4 (P n -g ) (0 |e . j (0 )k) 2 

= Z(21r)8«4(Pn-g)(0|iM(0) |«> 
3(74 » 

X<»|i*(0)|0> (2) 

where we use the metric (1, — 1 , — 1, —1) and generally 
the notation of Ref. 2. £ denotes a polarization vector, 
£»q=0, and the second form is a consequence of current 
conservation. In Eq. (2), the sum J2n includes all phys
ical eigenstates \n) of four momentum Pn

ft = qil, with 
gM^=o-2. The one-photon state with a2—0 does not con
tribute in Eq. (2) and is explicitly separated in Eq. (1). 

As remarked by Kallen4 and Lehmann5 and par-

3 Sachs [R.G. Sachs, Phys. Rev. 126, 2256 (1962)] arguing on 
physical grounds alone, suggests a stronger condition that 
tr2F2 (a-2) —-> 0 as o-2 —> 00. His argument also applies for space-like 
momentum transfers as occur in scattering as opposed to annihila
tion terms whereas our conclusions are restricted to time-like 

' 4 G. Kailen, Helv. Phys. Acta 25, 417 (1952). 
5 H, Lehmann, Nuovo Cimento 11, 342 (1954). 

ticularly emphasized in Bogoliubov and Shirkov6 

lim 7r(cr2) —» 0 (3) 

according to the usual assumptions in the renormaliza-
tion program and indeed Eq. (3) must be satisfied and 
the integral 

37T((72) 

~da2 (4) f 
Jo 

must exist if the representation in Eq. (1) is valid; 
otherwise subtractions are required. If, for example, 

lim 7r(<72)—> const > 0 
<r2-» 00 

(5) 

Eq. (1) would be replaced by 

£>/(<?),,= •4^ +C+(?2+a2) 

X 
/•co 

Jo (<r 

r(a2)da2 

(a2+a2)(q2-cr2). 
(6) 

where C is a subtraction constant and the subtraction 
has been made at q2~ — a2. 

The significance of this change from Eq. (1) to Eq. (6) 
lies in the fact that the vacuum polarization contribu
tion to the Lamb shift and to g—2 is given by Eq. (4) 
if the integral exists and is thus a calculable prediction 
of the theory to be tested by experiment.7 On the other 
hand, if the subtraction of Eq. (6) is required, a new 
arbitrary parameter C is introduced into the theory to 
be determined by comparing 

C-
f°° ir(<r2)da2 

-a2 

Jo <r2((x2+a2) 

with observation. In this latter case the very beautiful 
agreement of the measured and calculated Lamb shift 
in hydrogen, for example, would be lost as a major 
achievement for quantum electrodynamics. The meas
ured and calculated shifts are 1057.77dzO.10 Mc/sec 
and 1057.74±0.22 Mc/sec, respectively. The calcu
lated value includes —27.08 Mc/sec and —0.24 Mc/sec 
from second- and fourth-order vacuum polarization 
contributions computed according to Eq. (4) by keep
ing the electron-positron pair contribution plus radia
tive correction in Eq. (2) for 7r(<72). 

We now show that Eq. (3) is violated and the sub
traction in Eq. (6) must be made if the nucleon electro-

6 N. Bogoliubov and D. Shirkov, Introduction to the Theory of 
Quantized Fields (Interscience Publishers, Inc., New York, 1959). 

7 It is the original Uehling term. See, for example, S. Schweber, 
Relativistic Quantum Field Theory (Row, Peterson & Company, 
Evanston, Illinois, 1960); and L. C. Durand, I I I , Phys. Rev. 128, 
441 (1962). For the latest review of the experimental situation see 
R. P. Feynman, in The Quantum Theory of Fields, edited by 
R. Stoops (Interscience Publishers, Inc., New York, 1963); D. T. 
Wilkinson and H. R. Crane, Phys. Rev. 130, 852 (1963). 
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magnetic form factor F2(q
2) does not vanish for q2 —><*>. 

To see this, observe that according to Eq. (2), 7r(<r2) is a 
sum of positive contributions 7r(n)(o-2) from each physical 
state | n) and is bounded from below, therefore, by the 
contribution from any one such state; in particular by 
the nucleon-antinucleon pair state (proton or neutron). 
For this pair state the matrix element in Eq. (2) is 
directly the electromagnetic current of the physical 
nucleon for q2>4:M2, i.e., in the notation of Ref. 2 

W^MM-
l 

(4£ p Zv) 1 / 2 

X{Fl{q2)yll+F2{q2)<Tllvqv}vp\ (7) 

7T(2)(o-2) is readily computed from Eqs. (2) and (7) and is 
given in Ref. 2: 

44f2vi/« 1 / 4if2 \ 
r(2)(0.2)=" ( l ) 

1 2 T T V 2 \ O-2/ 

< 
X \F1-4MF2\

 2-
2M2 

Fi Fi 
M ' ) • 

(8) 

Evidently 7r(2)(o-2) is positive and nonvanishing as 
a2—->oo in violation of Eq. (3) unless F2(a

2) —» 0 as 
o-2-^oo more rapidly than (lncr2)-172. This establishes 
our claim.8 

This argument against a hard core9 occurring in 
F2(q

2) as q2 —> + oo is more of interest in principle than 
in practice. This is because the vacuum polarization con
tribution to Eq. (1) has the dimensions of (mass) -2. The 
familiar Uehling term corresponds to Fi = e and F2=0 
in Eq. (8) to lowest order in a= 1/137, and to M —> m} 

the electron mass. I t contributes a/lSwrn2 to the in
tegral, Eq. (4), whereas a baryon pair contribution with 
F!=e and F2=0 is reduced by (m/MB)2<SX 10~7. The 
form factor F2 would have to remain finite and compar
able to its static limit F2(0) = — (e/4:M)K, with K the 
static moment in nucleon Bohr magnetons, up to a very 
high momentum P far beyond present or projected 
energies and such that 

P2 /0A\/MB\2 

l n — ^ ( — )( ) ^ICM 
M2 \2lJ\mJ 

8 The electron-positron annihilation cross section computed in 
first Born approximation in a — 1/137 also violates its unitarity 
limit of fTTX2 unless (a-2)ll2F2 (a-2) is bounded as a2 -»oo, as shown by 
N. Cabibbo and R. Gatto, [Phys. Rev. 124, 1577 (1961)]. 

9 If the electromagnetic vertex is considered not as a function of 
photon momentum q2, but for a real photon as a function of the 
mass p2 of one of the virtual nucleon lines, with the other on the 
mass shell, it is a direct consequence of Ward's identity that 
F1(p

2,q2 = 0) = l. Thus a subtraction is indeed required for the 
sidewise dispersion relations constructed by Bincer [A. M. Bincer, 
Phys. Rev. 118, 855 (I960)]. Proof of this assertion is found in 
F. E. Low, Phys. Rev. 110, 974 (1958). It corresponds to the 
physical fact that the absorptive amplitude for Fi(p2,q2 = 0) 
vanishes identically because real transverse photons cannot be 
radiated or absorbed in zero-zero transitions. The charge thus 
appears as a subtraction constant. 

before noticeably perturbing the beautiful successes of 
quantum electrodynamics, which confirms the Uehling 
term to ~ 0 . 1 Mc/sec out of 27 Mc/sec. 

The above results for the nucleon form factors (which 
incidentally also apply to any baryon) can be re-
expressed in terms of the "charge" and "magnetic" 
form factors emphasized10 in recent analyses. Defining 
GE{(T2)=Fi(a2) - (a2/M)F2(a

2); GE»TOton(fy = e 

GM(a2)^F1(a
2)-2MF2(a

2); (9) 

we rewrite Eq. (8) as 
GMproton(0) = e( l+1.79) 

P(2) (0 = 
i / 4M2y 

1 2 x V 

X 
2M2 1 

\GM(<ri)\2+ |G B (a 2 ) | 2 (10) 

from which it follows that, if Eq. (3) is valid, 

(o-2)-1/2 |GM(cr2)|->0l 

(cr2)-l|^^(0-2)I—>0 
as 

GE and GM thus require at most one subtraction each in 
a dispersion analysis. For a finite charge renormaliza-
tion as discussed in Ref. 2, /V((72)dor2 must exist and, 
by Eq. (10), 

\GM(<r2)\->0, ( O - 2 ) - 1 / 2 | ^ ( O - 2 ) | - > 0 as <r2-+oo. 

This condition assures no subtraction for GM but still 
leaves the possibility of one subtraction for GE(CT2) in 
constructing dispersion relations. These weaker condi
tions on GE and GM result from the multiplying factor 
of a2 appearing in their definition11 in Eq. (9). 

A similar conclusion is also true for the pion charge 
form factor. For the vacuum polarization contributions 
of a pair of the presumed charged vector bosons,12 P^r±, 
TT((X2)^\FW{(T2)\2 as c2->oo, and if Eq. (1) is to be 
valid the charge form factor Fw{v2) must vanish as 
o-2—>oo with no hard-core or point-charge contribution. 

In conclusion we compare this result to the earlier re
lated papers of Lehmann, Symanzik, and Zimmermann,13 

and of Evans14 who showed that the irreducible Dyson 
vertex, defined as in Eq. (7) (with however the impor
tant difference that the vacuum polarization contribu
tion on the photon line is removed) must vanish for 

10 L. Hand, D. Miller, and R. Wilson, Rev. Mod. Phys. 35, 335 
(1963). 

11 This factor of a2 introduces a compensating l/<r2 into the 
current definition replacing Eq. 7 [see Eq. (5) of Ref. 10] and 
is removed arbitrarily by a different normalization such as 
6 = [1/(1 -a2/4M2)2G, for example. 

12 See, for example, T. D. Lee and C. N. Yang, Phys. Rev. 128, 
885 (1962). 

13 H. Lehmann, K. Symanzik, and W. Zimmermann. Nuovo 
Cimento 2, 425 (1955). 

» L. G. Evans, Nucl. Phys, 17, 163 (1960). 
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q2 —>oo. This is proved in Refs. 13 and 14 to be the 
necessary condition for the existence of Eq. (1) and 
hence, as remarked explicitly by Evans,14 the basis of 
the vacuum polarization fits. To go from their work to 
the conclusion drawn in this paper it is necessary to 
assume that Z% is finite.2'14 Our present argument avoids 
any such reference to an unobservable renormalization 
constant. 

III. PROPAGATOR BOUNDS WITH APPLICATION TO 
PIONIC CONTRIBUTION TO VACUUM 

POLARIZATION 

We have seen in the previous section that the finite-
ness of the vacuum-polarization calculation and of re-
normalization constants is related to the behavior of 
form factors at large momentum transfer. In this sec
tion we give a concise discussion of the method intro
duced by Meiman,15 and Geshkenbein and Ioffe16--18 

for studying the occurrence of zeros in propagators, and 
apply it to construct bounds on renormalization con
stants and propagation functions in general. 

Referring back to the photon propagator for con-
creteness and assuming that Eq. (4) converges and the 
vacuum polarization is finite, we have from Eq. (1) 

1 /•<* <ir(<r2)d(T2 

DF(q*)= + / , 
q2 Jo a2—q2 

(ID 

which is positive definite for spacelike q2 \q\2<0 

according to Eq. (2). In particular we have the 
inequality 

' T T ^ V ) ^ 2 

* M - M 2 ) - — > / - T - , - T - > (12) 
1 r°7r(* 

— > — 
q\2 Jo a' + \q\ 

where 7r(n)(o-2) represents the nonnegative contribution 
to the positive definite spectral function of an arbitrary 
state (n) in the complete-state sum in Eq. (2). Our aim 
in this section is to construct a nonzero lower bound for 
the right-hand side of Eq. (12). As we see in Eqs. (8) 
and (10), the spectral function can be given as a square 
root factor for two-particle phase space multiplied by 
form factors if we take a two-particle state for n. We 
restrict ourselves to two-body states here since the 
analyticity properties of these form factors, as estab
lished rigorously from formal field theory or to each 

16 N. N. Meiman, Zh. Eksperim. i Teor. Fiz. 44, 1228 (1963) 
[English transL: Soviet Phys.—JETP 17, 830 (1963)]. 

16 B. V. Geshkenbein and B. L. Ioffe, Zh. Eksperim. i Teor. Fiz. 
44, 1211 (1963) [English transL: Soviet Phys.—JETP 17, 820 
(1963)]; Proceedings of the 1962 Annual International Conference on 
High-Energy Physics at CERN, edited by J. Prentki (CERN, 
Geneva, 1962), p. 708; Phys. Rev. Letters 11, 55 (1963). A further 
application is made by N. N. Meiman and A. A. Slovnov, Phys. 
Letters 10, 124 (1964). 

17 B. V. Geshkenbein and B. L. Ioffe, Zh. Eksperim. i Teor. Fiz. 
45, 555 (1963) [English transL: Soviet Phys.—JETP 18, 382 
(1964)]. 

18 B. V. Geshkenbein and B. L. Ioffe, Institute of Theoretical 
and Experimental Physics, Moscow, Reprint No. 218, 1964 
(unpublished). 

order of a Feynman graph expansion, are essential in
gredients in this development. Suppressing inessential 
spin complications by considering the contribution of, 
say, a w+—ir~ or K+—K~ pair in Eq. (12) we find in 
place of Eq. (10) 

7r(26)((T2) = (4&rV)- 1 (o- 2 -4Ai 6
2 ) 3 / 2 

X\Fb{a2)\2d{ci2-^b
2), (13) 

where nb is the boson mass and Fb(<r2) its electromagnetic 
form factor. Inserting Eq. (13) into Eq. (12) and intro
ducing dimensionless units x=o-2/4/x&

2, y= |g|2/4/*6
2, 

we find 
1 1 r™ dx 

W D F ( - W y ) - - > / 
y 48TT 27I x5/2(x+y) 

X(x-iy2\Fb(x)\2^~$(y), (14) 
12 

The possibility of constructing a minimum 

$mm=min(<l>)>0 

was first shown by Geshkenbein and Ioffe16 and the 
present discussion is adapted from Meiman.15 A formal 
construction is presented in the Appendix. Here we 
outline the method to illustrate the class of problems to 
which it is applicable and to give the essential ideas. 

In Eq. (14) the integrand is a product of a simple 
kinematic factor 

p(x) = x~5/2(x- ly^x+y)-1 

and the squared modulus of a form factor analytic in 
the cut x plane with a branch cut extending from, say, 
X=XQ to x= oo. We write then 

x r™ dxf ImFh(x
f) 

Fb(x) = e+~ / — — 
xf(xf—x— ie) 

(15) 

assuming for simplicity that a once subtracted disper
sion relation suffices and that normalization is to 
F(0) = e. The essential point is that F(x) is specified and 
finite at some point to the left of the branch point at 
X=XQ. The possibility of a finite minimum is suggested 
if we just look at Eqs. (14) and (15). $ is clearly larger 
than zero in the absence of an absorptive part in Eq. 
(15) as Fb(x) —> e everywhere. In order to decrease the 
real part of Fb(x) in Eq. (14), there must be a finite 
imaginary part present, and the most economical 
balance between real and imaginary parts yields <£min. 
Evidently if the branch point x0 in Eq. (15) lies to the 
left of the threshold of the integral in Eq. (14), i.e., if 
#o<l , the most economical balance is achieved if we 
crowd the contributions to ImFb(x') into the integral 
# O < # ' < 1 in such a way that there is neither a real nor 
imaginary part of Fb{x) remaining for x>l. This is 
possible [in the sense of a Riemann-Lebesque integral 
in Eq. (14)] because the spectral function for the ver-
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tex is not positive definite but can oscillate at will. In 
this case <£min —> 0 and no useful bound is obtained for 
#o<l , as verified formally in the Appendix. Our con-
considerations apply only to problems with #o> l . A 
second condition for a finite bound is that Fh(x) be 
normalized at a point to the left of the branch point 
%= 1. If the normalization point approaches the branch 
point, an absorptive part of zero width can cancel 
Fb(x) for x> 1 without producing a contribution of finite 
weight to the integrand in Eq. (14). This is also verified 
explicitly in the Appendix. 

A practical deduction from this is that the present 
techniques are inadequate for constructing general 
bounds in quantum electrodynamics valid to all orders 
of the fine structure constant. This is a consequence of 
the masslessness of a photon which leads to the branch 
point at #o=0 in Eq. (15), arising from many photon 
states, which are coincident with the photon pole. Also 
in considering the electron propagator, the cut for 
e —» e+y starts at the location of the electron pole. 

As an example of a problem for which a bound can be 
constructed, we consider the contribution of a ir+ir~ 
pair state to the photon spectral function and find its 
minimum contribution to Z3"1 and to vacuum polariza
tion, to all orders of strong coupling but to lowest order 
in e2. To this order, the many photon states coupling to 
a single photon via the scattering of light by light inter
action can be ignored. The propagator and vertex branch 
points then coincide at XQ=1 (in units of 4JUTT2) for a 
7r+7r~ pair state and we can find a minimum. 

The technique of Meiman is to map the cut x plane 
into a unit circle with center at x=0 [the normaliza
tion point of FT(0) = e] and with the two sides of the 
cut forming the periphery of the circle as in Fig. 1. The 
relevant mapping is 

z=ei9=-l(x-l)V2-iy[(x-iy/i+q. (16) 

We then write 

1 rT 

* = — / 
2ir J -I 

d6p(d)\F(ei6)\2, (17) 

where p(d) includes the kinematic factors and the 
Jacobian of the transformation Eq. (16). The behavior 
of the kinematic quantities and of the form factors can 
be separated by using the inequality of the arithmetic 
and geometric means to write 

<S>> e x p | — f dO\n[p(6)\F(eie)\2~]\ 

>expj 
r l 

r l r* 
Xexp ~ R e / t 

L.7T J~T 

ddhiF(ei9)\. (18) 

The first factor in Eq. (18) is integrated directly in 

(0 
FIG. 1. The transformation z= -[(x-iyV-il/Kx-l^+iJ 

The lettered points transform as shown. 

terms of known functions. Using the known analytic 
properties of F and assuming that F(eie) vanishes at 
most at a finite number of points on the circle, the 
second factor is shown in the Appendix to be > F(0)2= e2. 

The general discussion and formal numerical result in 
terms of mass parameters is reproduced in the Appendix 
and here we simply quote the results. The coefficient of 
\/y in Eq. (14) for y—><*> defines the charge renor-
malization Zf1— 1 due to the pionic contribution to 
vacuum polarization. For a point pion F^—e and Z3 - 1 

diverges logarithmically. As a lower bound we find 

Zz-
l>l+a/96. (19) 

Similarly a lower bound on pionic contribution to the 
Lamb shift is obtained by minimizing the integral in 
Eq. (4) and the result so obtained is 

' a/1536 M2. (20) 

This is smaller than the present limit of error by two 
orders of magnitude. I t is reduced by 57r/64 from the 
value obtained for a point pion and by a factor of 
^ 1 / 4 0 from the enhanced pionic contribution due to 
the 2TT ^-wave resonance (or p meson).19 

IV. RIGOROUS BOUND ON NUCLEON 
PROPAGATOR AND Z^ 

With the techniques discussed in the preceding sec
tion, it is possible to bound from below the contribu
tions of strong interactions to the nucleon propagator 
and wave function renormalization Z^1. This result is 
rigorous to all orders of the strong interaction. 

The spectral representation for the complete re-
normalized Feynman propagator for the nucleon is, in 
momentum space, 

Cfc>i(*2)+p»0r*)] 
s/(P)=- •F 

Jo 

da2- (21) 
p-M Jo p2- w 

Since the weight function pi(a2) is both real and non-
negative we may analyze its contribution to the 
propagator, 

SF*(p2) = Tr\ yoSF 

L4^o 
'(£)] 

M2-p 

1 r« 

-p2 Jo 
da2-

Pi(*2) 

T 2 — ^>2 
(22) 

19 L. C. Durand, III, Phys. Rev. 128, 441 (1962). 
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and through it 

zr1^ ^ l + Z Pl(<7S 

Jo 
)do (23) 

as done in Sec. I I I . p± is expressed in terms of the nucleon 
field operator by 

The contribution of this state to pi is 

36 
. (^2) 1 Al _ PL\& y | Nir 

ST2(<T2~M2)2 

\Q2 1 / l i \ / ^ 2 \ 

Pl' .(*»)= 
r l ^ 

4^?o n a = 1 

(24) 

in analogy with Eq. (2). We construct our minimum as 
done earlier by keeping in Eq. (24) the lightest strongly 
interacting state, the one-nucleon, one-pion state with 
a threshold at a2=(M+p)2. The matrix element 
(0\4/\NTT) has the form 

(26) 

where Q is the barycentric three momentum and E the 
nucleon energy of the | NT) state. 

The contribution of the second term in the curly 
brackets is smaller by two orders of n/M than the first 
at a=M (where we know / i ) so we retain only the first 
term and write: 

PI(<X2)> 
3 g> e 3

 |GI* 
(27) 

<o|iH^i>= 
1 M 1 

(2q10y'*(p10y<*p-M 

Xhsfi+(P-M)ysf2}u(p), (25) 

where / i and / 2 are scalar functions of a2. At or2=M2 and 
p = M\ i.e., for the nucleon line on the mass shell, the 
/ 2 term vanishes and the first one is normalized to the 
pion-nucleon coupling constant fi(M2) = g; g2/47r= 14.4. 

2 4x2 E (a2-M2)2 

The vertex function G satisfies a dispersion relation, 
with a cut from a2 = (M+fi)2 to oo, and G(M2) = 1. This 
is a rigorously established dispersion relation since there 
is no unphysical region below the physical threshold 
(M~\-p)2 into which the unitarity equation must be 
extended. 

All the conditions are now met for applying the 
method of Meiman and we find for spacelike p2, setting 
x=a2/(M+fx2), 

M-n\2~\*/2 
1 r f 3 /•» r /M-n\*-\ 

SF*(p2)> 1 min — / dx(x-lY/2\ x-l ) 
M2+\p\2 4TT I87rii L \M+HJ A 

Xx~l[ x-

> 
1 3 g2 X { X + [ 1 - ( ( M - M ) / ( M + M ) ) 2 ] 1 / 2 } 3 

M ^2n-2> 
^(x+^[x~(^T(x+^±-~) 
\ M+J L \M+J J V (M+uW 

\G(x)\>\ (28) 

1 

" J f 2 + | ^ | 2 3 2 4TT ( X + l ) 2 { \ + [ l + ( ( l f - M ) / ( l f + M ) ) ] 1 / 2 } 2 {(M+riX+KM+fiy+lp^y'*}* 
(29) 

with 

i.e., 

x= 
r / M \2n i / 2 

HsrJJ • 

*V(^2)> 
1 

\ 100 / M2+\p\2 

X { 0 . 4 9 ( i f + M ) + [ ( M + M ) 2 + I # 12]1/2}-2. (30) 

The lower bound on Z2""1, the nucleon wave function re-
normalization, Eq. (23) is read off from Eq. (30) by 
going to the limit | p 12= 00 : 

Z2"1> 1+minf fPl(k
2) I rNdk*]> ( n - ^ — ) • (31) 

V. APPROXIMATE BOUNDS FOR PION PROPAGATOR, 
Zr\ AND 5y2 

Beyond this particular application we must make 
approximations due to the restriction that the branch 
point of the vertex function must not lie below that of 
the propagator, i.e., we require XQ>1 in Eq. (15). For 
the 7r meson propagator, for example, the threshold for 
the lightest two-particle state contributing the weight 
function p in 

1 f P(^2) 
AF(q2) = + / da2 (32) 

li2 — q2 J <j2 — q2 

is AM2, corresponding to a NN pair and we can write 

1 / 4Jf2\1/2 

47r2\ a2 J 
a2 

X- -\F„N(v2)\2. (33) 
(o-2-V)2 
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To each finite order in a perturbation calculation 
F\N(V2) satisfies a dispersion relation in the variable a2 

' with the cut starting at < 7 2 = V < 4 M 2 . The branch point 
at <r2 = 9p,2 comes from the three pion state which is the 
lightest strongly interacting one which contributes. No 
exact proof of a dispersion relation has been constructed 
for this case because of the necessity of analytically con
tinuing the NN scattering amplitude below threshold 
down into the unphysical region starting at <J2=9M2. 
This same problem stops us here, as the cut in FT^ 
extends below the threshold of pNff in Eq. (32) and we 
can give no exact result. 

Although no rigorous conclusions can be drawn, it is 
of interest to establish the approximate ones that can 
be obtained by keeping only the lightest "two-particle 
cuts" including the contributions of unstable vector 
resonances. Thus we approximate the 3-pion contribu
tion to p(a2) in Eq. (32) and FTN(a2) in Eq. (33) by a 
two-particle pir resonant state. The spectral weight 
function p (a2) in Eq. (33) is replaced by 

1 aQ* 1 
p ( < r 2 ) > - — -\Fp^(a2)\2, (34) 

IT2 nip (<r2—M ) 

with 
X= { l - [ / x V K + M ) 2 ] } 1 / 2 ~ 0 . 9 9 , 

or 
1 /g2/4:w\ 

M I ? I 2 ) > T - +( ) 

|9|
2+M2 V 4.6 / 
X{(m ( ,+M)+((^ ,+M) 2 +!? l 2 ) 1 / 2 }- 2 (39) 

and 
Zz , ^ > 1 + (g2/4,r)/4.6= 1.4. (40) 

Equation (39) gives a lower limit for the correction to 
pion propagator as often introduced in peripheral 
analyses of ir-N interactions.22 For space-like |q\ 2<mp

2 

^30fj,2 this increase in the value of the propagator 
comes to less than 5% and is well within the uncer
tainties of such analyses. 

20 See, for example, S. M. Berman and S. D. Drell, Phys. Rev. 
133, B791 (1964). 

21 The analyticity of such diagrams has been discussed recently 
by C. Fronsdal and R. F. Norton, University of California, Los 
Angeles, report May 1963 (revised) (unpublished). 

FIG. 2. A reduced graph for ,' < 
the process w —> pir. _____ _^f \ 

with Q the barycentric three-momentum for the \wp) 
state. 

The pww form factor is normalized to the observed 
p—> 2x decay width for a2 = /j,2, which gives20 

FpTir(a
2) = gpviTG((T2) 

with 

g P „V- i r~1 .8 and GQi*)=l. (35) 

If we neglect all but the lightest two particle p7r in
termediate state contribution to the absorptive part of 
Fprvj it is easy to see that the reduced graph, Fig. 2,21 

contributes with branch point at q2=(mp+p/)
2 and we 

can in this case once more apply the method of Meiman. 
We can write then for Ap(q2) with spacelike q2 

By a similar calculation we may put a lower bound on 
the pion self-mass 

V = U2p(a2)da2. (41) 

8fx2 is probably infinite, but again if we assume that the 
integral exists then it must be larger than 

minj / a2p(a2)dcr2 \ , 

or 

V > (X+ l ) 2 (w p +M) 2 (minZ 3 - 1 -1)« 66M
2. (42) 

We note in passing that we may also approximate 
a lower bound on 8JJL2 by an entirely different tech
nique similar to that used in Ref. 2. The essential 
assumption now is that the form factor F^N(q2) associ
ated with the wNN vertex satisfies an unsubtracted spec-

22 For example, E. Ferrari and F. Selleri, Nuovo Cimento Suppl. 
24, 453 (1962). 

1 C p(a2)da2 

&F(\q\2)> + / (36) 
MHV J cr2+\q\2 

i U P - 2 r *QZ
 \G\2 ) 

> + m i n / da2 (37) 
\q\2+p,2 \mp

2w2J (a-2—M
2)2a-2+ |g|2J 

1 g2( 1 \ X { X + [ l - ( ( m p - M ) / K + / x ) ) 2 ] 1 / 2 } 3 r / \q\2 \ 1 / 2 T- 2
 / N 

> -+—( X+ 1 + (38) 
M2+/z2 4Amp

2 /8 (1+X)2 L \ (mp-\-p)2) J 
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tral representation 

F(q2) 

thus 

1 r " ImF( 

7ri9ju
2 <l'2— 

7T J9 

ImF{qn)dqn 

9M
2 g' —qz—te 

ImF{q2)dq2 

9M
2 g 2 -M 2 

(43) 

As in Ref. 2, we may use Schwartz' inequality to de
rive the following inequality for ImF(q2) above the 
physical threshold for AW production, q2>4M2 

ZlmF(q2)y<T(q2-fi2)2[(q2-4M2)/q2J/2 

Xcrr((<?2)1/2)p(<72), (44) 

where or((g2)1/2) is the total annihilation cross section 
for the lS0 state of the NN system, and p(q2) is the 
weight function in the spectral representation of the 
pion propagator, Eq. (32). 

If we now write Eq. (43) in the form 

g-I<— [ dq2lp{q2)J'2 

X[(g2~4M2)A2]1 / 4[(rT(fe2)1 / 2)]1 / 2 , (45) 

1 r*M2ImF(q2)dq2 

' v 2 Q2—M2 

where 

7T J 9u 

(46) 

is the contribution from below the physical NN thresh
old, and observe that for q2>4M2 unitarity bounds 
<TT b y 

<rT((q2)1/2)< 167r/(g2-4M2) (47) 

then 

g - / < 4 f dq2[p(q2)J/2[q2{q2-±M2)~YUA. (48) 
J4M2 

Applying now Schwartz' inequality once again we obtain 

(g-iy<([ wptf)) 
V/4M2 ' 

a-00 dq2 16 

4M2 

X 
' «M» qz (<?2-41f2) 1/2/ 

(49) 

8 r00 

<— / qWW 
M2J4M> 

< ( 8 / l f 2 ) V 

or 
V > 8 0 [ ( g - / ) V 4 7 r > 2 , 

(50) 

(51) 

where g2/47r= 14.4. 
Any attempt to evaluate / , however, can only be very 

approximate, as the integral is over a region unphysical 
for the AW process. In the two-particle approximation 
we consider the pw state as the only one which couples 
to both the T and NN in the mass region 9/x2<(j2<4M2_. 
Application of unitarity to the amplitude for pir <->NN 
analytically continued below threshold into this region 
can then be made as shown by Mandelstam23 in order 
to approximate / in this region. We have not carried 
out this calculation. If it turns out that I<^g, then the 
bound Eq. (51) is much stronger than Eq. (42). 

VI. RELATION BETWEEN ZEROS IN PROPAGATORS, 
POLES IN IRREDUCIBLE VERTEX FUNCTIONS, 

AND UPPER BOUNDS ON 
COUPLING CONSTANTS 

In this section we discuss the connection between the 
occurrence of zeros in propagators, poles in the Dyson 
irreducible (proper) vertex parts, and upper bounds on 
the renormalized coupling constants. This is the original 
problem studied by Geshkenbein and Ioffe16 and 
Meiman15 who bounded coupling constants by the re
quirement that there be no poles in the proper vertex 
parts. We present no new limits in this section but 
rather concern ourselves with the question of whether 
or not there is physical significance to be attached to 
the appearance of vertex poles and propagator zeros. 

Goebel and Sakita24 have already pointed out by 
considerations based on potential models that a pole in 
the proper vertex part has no direct physical significance 
and therefore cannot be excluded by general arguments. 
We present here a further model in support of their 
argument and in answer to a subsequent communica
tion from Geshkenbein and Ioffe.18 This is a generalized 
Lee model with an unstable W particle in addition to the 
stable V particle both of which couple to the N and 6. 
I t contains a pole in the Dyson irreducible vertex T, 
and a zero in the V particle propagator, but no pole in 
the scattering amplitude and, hence, no direct observ
able consequences. Before developing this model let us 
first review briefly the Geshkenbein-IofTe argument. 

We consider the propagator of a boson with a 
Kallen-Lehmann representation of the form 

1 /•« pCO 
D(x) = h / dx'-f . (52) 

Here we have introduced dimensionless variables as in 
previous sections. xp is the position of the pole. 

For x<xp, both terms are positive so that there can 
be no zero in this region. If p{x) does not vanish for 
x> 1, there will also be no zeros in the continuum. We 
assume this to be the case; i.e., there is always at least 
one open channel above threshold. When xp<x<l the 
pole term is negative and the integral is positive leading 
to a possible zero as illustrated in Fig. 3. The spectral 

23 S. Mandelstam, Phys. Rev. Letters 4, 84 (1960). 
24 C. J. Goebel and B. Sakita, Phys. Rev. Letters 11, 293 (1963). 
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representation Eq. (52) allows at most one such zero. 
In fact, the necessary and sufficient condition for a zero 
to exist for xp<x<l is 

/ ; 

' P O ) l 
dx > 

vv X X X"n 

(53) 

We now relate the existence of a zero to the value of 
the coupling constant. In the sum of states in p{x) we 
keep only the term corresponding to a two-particle 
state which shall be the state of lowest mass in the sum. 
Then we have 

P(x)>p<-»(x)=g2p(x)\F(x)\2, (54) 

where g2 measures the strength of the coupling to the 
two-particle state, p(x) is a kinematical factor, and F(x) 
is the form factor normalized to unity at xp and assumed 
to be analytic except for a cut starting at x= 1. 

Using the inequality in Eq. (53), we see that if 

(i- -xp)L 
r>(2) 

dx-
(*) 

- > i , 
x— 1 

it follows from p(x)>p(2)(x) that 

(1-x, >i dx > 1 ; 
x—1 

(55) 

hence there will be a zero in D(x). 
Introducing Eq. (54) into Eq. (55) we see that if 

g2ft> 1, where we define 

Sl=(l-xp) 
r00 dx 
/ p(x) 

J i x—1 
\F(x)\ 

there will then be a zero in the propagator. Further
more, if 12 has a minimum S2mm>0, and if g2Omin>l 
there will be a zero. We must require then that 

g2<VOr (56) 

in order to avoid the necessary occurrence of a zero in 
D(x). 

Geshkenbein and Ioffe16 have shown that if there are 
no poles in T(x) where 

POLE TERM 

• INTEGRAL 

D ( x ) 

FIG. 3. Possible occurrence of a zero in the propagator 
D(x) in Eq. (52). 

Their result is logically equivalent to the statement 
that if 

g2>V/n (60) 

then T(x) has a pole. However, it follows directly from 
Eq. (A2) of the Appendix that 

i ' m i n J- min • (61) 

Thus we have shown that for g2>gc
2, where g^^mixT1 

=/min_1, D(x) develops a zero and Y(x) develops a pole. 
The crucial assumption required to bound the coupling 
constant is the absence of a zero in D(x) and/or the 
absence of a pole in T(x). 

Even if there is a zero of D(x) at x=x0 we can still 
bound g2 in terms of the position of the zero as shown by 
Geshkenbein and Ioffe. Let us assume that D(x) has a 
zero at x—xo so that 

XQ 

1 r00 p(x)dx 

~~Xp J i X XQ 

(62) 

T(x) = F(x)/(x- xp)D(x) (57) 

is the proper vertex, then the coupling constant must 
satisfy the inequality 

where, in our notation, 

r 
7= / dxp(x) 

g 2 < l / / m i n 

F(x) 

(x—xp)D(x)l 

(58) 

(59) 

Keeping only the two particle contribution to p(x) 
leads to the inequality 

g2(%o-Xp) dx \F(x)\2<l. (63) 
J l X—XQ 

Using the result of Eq. (A2) of the Appendix, we have 

/ dx^—\F(x)\2\ = 
LA X-XQ Jmin [ ( l -*o) 1 / 2+(l-*p) 1 / 2 ] 2 

X J dxp(x)\F(x)\2\ (64) 
*-J 1 -«min 
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N0 = O 

W 

FIG. 4. The Dyson 
expansion for the 
mass operator 2 of 
the V field in the 
extended Lee model 
described in Sec. VI. 

so that we have 

\XQ XpJ 

C(l-Xj,)1/2+(l-x0)1/2]2 

X / dx p(x)\F(x)\2 I < 1 . (65) 
l—J l -Jmin 

If x> 1 so that there is no zero, we obtain our previous 
result that g2fimin< 1. As #o approaches xp, the bound on 
g2 approaches infinity. Since, in general, x0 can be any
where in the range XP<XQ<1 no useful bound is 
obtained. 

This result was constructed with no further assump
tions on the form factor than that it is analytic in the 
cut plane with the branch point at x=l, and with 
F(xp) = l, while xp<l. If we make the additional 
assumption that T(x) does not have a pole at the zero 
of D(x) but has the very same analyticity properties 
assigned above to F(x), it follows from Eq. (57) that 
F(x) must have a zero at x=xo. 

Then we can obtain a stronger bound by writing 

F(x) = [_{X—XQ)/(XP—XQ)~]F(X) , (66) 

where F(x) has no pole at x0. We then obtain the 
inequality 

[( l-x^+a-^)1 7 2]2 

\XQ XpJ 

X / dxp(x)\F(x)\2\ 
J1 -In 

< 1 . (67) 

For arbitrary x0 between xp and 1 we again obtain the 
result that g2Omin<l. With this assumption that F(x) 
has a zero at x=x0 and T(x) has no pole where D(x) 
has a zero the bound on g2 becomes stronger as x0 ap
proaches xp. This is the case considered by Geshkenbein 
and Ioffe in Ref. 17. 

We now argue that there is no compelling physical 
argument in support of the bound Eq. (58) by con
sidering a generalized Lee model with two fields \pv 
and \[/w, representing fermions with the same quantum 
numbers, in addition to the N and 6 to which they 

couple. The Hamiltonian is written as 

dzk r d6k 

J (2TT)3 

^ka^ak+Bfyvtyw+if'wtyv) 
(2TT)3 

+ (XFO\M+AIFO</'TF+)^4 

+ (\vo^v+\w0^w)^NiAK (68) 

We have set the mass of the N particle to zero for sim
plicity and the 6 field is written 

• / • 

d3k u(k) 
-ak. (69) 

(2TT)3/2 (2CO,)1/2 

We assume the commutation rules 

and all other anticommutators are zero. The au sat
isfy the usual canonical commutation rules [a^a^]] 
= 8(k—kf). We further restrict the parameters in the 
Hamiltonian so that there is only one stable single-
particle state denoted by | V) plus the continuum of NO 
scattering states. The W field introduces an unstable 
particle resonance and is of importance here because 
the mass operator now becomes an infinite series of 
terms as illustrated in Fig. 4 instead of a single term as 
in the Lee model, and we therefore have the possibili
ties of a pole in T(x) and a zero in D(x). 

Furthermore, we impose the asymptotic conditions 
that 

(0 |^ F |F ) = ZF=const 
and 

<0|iMF> = 0. (70) 

This requires that only the \pv field will asymptotically 
generate a stable V state. 

We now define the V propagator by 

Dv(t-tr)=(01 T(fv(t)W)) 10) (71) 

and the Dyson vertex and scattering amplitude in the 
conventional manner. A direct summation of the 
graphical series gives for the Fourier transforms of the 
propagator, proper vertex, and transition amplitude 

Dv~
l(o>) = Zv-l(oi-Mv) 

X l+AF
2(co-irv)\M^Mv,MV) 

T(u) = Zv-
l/2\v 

xlY 

(w—COO)[1+ATFO%(W,COO)]-

\W<?{O)-MV)?I(U,MV) 

(co—aj0)[l+Xpro
2Si(a),coo)] ] • 

(72) 

(73) 
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r(co)=r(co)Z)F(co)r(co) 

W o 

(o)—COO)[1+ATF0
22I(CO,COO)] 

(74) 

where Mw0 has been eliminated in terms of OJ0 which is 
the position of the zero in Dv(o>) and the pole in 
T(<a),Mv0 has been eliminated in terms of the stable 
particle mass Mv, and B was determined by the asymp
totic condition ( 0 | ^ | V)=0. The residue of the pole at 
co=Mv of the scattering amplitude is defined to be Ay2 

and is related to the bare coupling constant by 

We have also introduced 

(75) 

Si(coi,w2) = 
4 W (a iw2 J 

1 f 

4x 2 7 

ku2(co)do) 

— coi)(co —C02) 

ku2(co)dco 
(76) 

(CO — COi)(cO — C02)(C0 —CO3) 

which are positive for 00 <Mt. We assume that the cutoff 
u(oo) falls off sufficiently rapidly for large o> to make 
2Ji(coi,co2) convergent and the theory finite at each step. 
The coupling constant Ay2 is restricted by its definition 
and the requirement that Ay0

2>0 to satisfy 

0<\v2<tMMv,Mv)']-1- (77) 

I t can be shown that \w0
2 and AF

2 can be chosen so 
that there is only one stable state. We have already 
assumed this in our discussion since the physical V 
state and the NO continuum were taken to form a com
plete spectrum of states. Consistency of this assumption 
is then established by showing that these states do in 
fact satisfy the completeness condition 

W | + E * | i W > < i W * | = l (78) 

with appropriate choice of \w2 and of Ay0
2, or \v2 

satisfying restriction Eq. (77). More intuitively we see 
this by observing that the V propagator Eq. (72) has 
only one pole at the physical mass Mv of the stable V 
particle, and that the W propagator 

<012X^(0,^(0)10) 
and the "mixing" off diagonal propagator 

(017X^(0,^(0)10) 
have no poles. According to Eq. (72) this condition is 
satisfied if 

f \v0
2MMt,Mv) U \w0

2MMt,o>o) 

\(Mt-Mv)MMt,Mv) 
X 

(ikf«-«o)Si(4f«,«0) 
> 1 . (79) 

Since the first two factors are arbitrarily close to unity 
for large values of AFo

2 and \w0
2, and the third factor is 

larger than unity for Mt>o)0>Mv according to the de
fining Eq. (76) for Si we see that our model with one 
bound state is consistent. We notice, however, that Dy 
has a zero and T SL pole located at coo between the pole 
and the continuum of DV- These are not present in the 
scattering amplitude, however, because the pole at 
co = co0 in the first term of Eq. (74), i.e., 

r(co)£>F(a>)r(aO 
W o 

(co—co0)[l+ATF0%(a>o,coo)] 

is canceled by the pole of the last term leading to a 
finite T(co0). There is thus no observable effect of the 
zero in D7 or pole in T. Hence there are no physical 
grounds for ruling out the possibility of zeros in propa
gators or poles in vertex functions and so the tech
niques used in this paper lead to no bounds on coupling 
constants. 

In conclusion, we note that if we apply the method of 
Meiman to bound Ay2 in our VW model we obtain the 
inequality 

Z(Mt-Mv)1/2+(Mt-o>o)1/2y 
\v2< R-

1 

COQ—MV MMv,Mv) 
, (80) 

where 

/ 1 Cr ku2(a>) doo\ / f 1 r 
R==l— / dd l / e x p — / dd 

\2TT 7_T 2TT(CO-MV)2 dd// 127T J^ 

r ku2(oo) doo' 
Xln , 

L2TT(CC-MV)2 ddA 
(81) 

The inequality of the arithmetic and geometric means 
implies that 

R>1. 

If we do not assume that the position of the zero in 
Dv(u) is known but merely that M F < ^ 0 < l f t then the 
factor (o)0—M v)~l rnay be infinite and we obtain no 
bound. If there were no zero so that cc0>Mt then we 
would obtain 

\v2<RlMMv,Mv)lr
1 (82) 

which by Eq. (81) is consistent with the known bound in 
AF

2 that AF
22i(MF ,M"F )<l . 

An alteration of the VW model to one in which both 
the V and the W appear as stable particles, as studied 
by Srivastava,25 no longer yields a zero in Dv or a pole 
in T. This model gives the same equations discussed in 
a recent paper by Geshkenbein and Ioffe18 who appealed 
to this result to support their coupling constant limit 
and to refute the earlier criticism of Goebel and Sakita.24 

26 P. K. Srivastava, Phys. 128, 2906 (1962). 
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The point is simply t h a t one has additional constraints 
upon the coupling constants and mass parameters 
AF0> ^WQ, B, Mvoy MwQ in order to make the two stable V 
and W particle states mutual ly orthogonal. The con
struction of states and propagators in this case has been 
given by Srivastava as well as by Geshkenbein and Ioffe 
and we do not repeat it here. The resulting model is 
thus too restrictive to enable any general conclusions to 
be drawn. 
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APPENDIX 

I n this Appendix we give a simplified resume of the 
mathematical procedures introduced by Meiman for 
constructing the limits obtained in this paper. 

We prove the following theorem: 
Given an integral of the form 

D R E L L , F I N N , A N D H E A R N 

gives 

- [ [/(%(W>expU- ( 
2ir J_r L27T J_ 

X2 
So 

1 r00 

IT J i 
dxix+axY^x+a^Y2' • -{x+an)

an\G{x) |2 (Al) 

satisfying: (1) / exists; (2) the integrand is positive; 
(3) G(x) is a function which is (i) analytic in x except for 
a cut from 1 to oo, (ii) unity at x~c (c real and <1), 
(iii) bounded at oo by some power of x1/2, (iv) nonzero 
on the cut except at a finite number of discrete points; 
then 

7>4X 2 [X+(l+ai ) 1 / 2 ] 2 a ^+(l+^) 1 / 2 ] 2 a 2 - • • 
[A+(l+aw)1/2]2«» (A2) 

with 
X=(l -c) 1 / 2 . 

Proof: In terms of the variables defined by 

z=-(t-i)/(t+i) 

tan(0/2) = *= [ 0 - l ) / ( l - c ) ] 1 / 2 

I may be written 

(A3) 

(A4) 

1—c r' 

7T Jo 
^ / ( l + / 2 ) [ l + a i + ( l - c ) / 2 > - • • 

[ l+a„+( l - c ) / 2 ]« - |G(^ ) | 2 . (A5) 

Equation (A4) defines a mapping of the cut x plane into 
a unit circle as shown in Fig. 1. 

Setting 

/(*)= |/|(l+<2)[l+ai+(l-^a>-

and 
[l+fln+(l-c)/2> 

g(e)=\G(e«)\*, (A6) 

the inequality of the ari thmetic and geometric means2 6 

26 See for example, G. Szego, Orthogonal Polynomials (American 
Mathematical Society, New York, 1959), p. 2. See also Chap X 
for further development. 

with 

In[/(%(W] • 

= exp|— / d6\n\G(ei9)\2 

= e x p | - R e f d0lnG(ei9) 

2TT 

7 i = e x p 

(A7) 

(A8) 

Now 
f i r dz 

ln/2=2Re —- d) —\nG(z) 
[2iri J WHO z 

(A9) 

If G(z) has no zeros within the circle, then its known 
properties and Cauchy's theorem imply that 

72=exp[2RelnG(0)]=l. (A10) 

On the other hand, if G(z) has zeros at points 

zi=r1e
i,p\ Z2=r2e

i(f>2- • 'Zn = rne
i(pn{rj<\) 

we can write 

(z—riei(pl) (z—rne
i(pn) 

G(z) = G(z) ( A l l ) 
— r\ei<px —rne

i<Pn 

where G(z) has no zeros and 

Hence 
g (0 )= l . 

ln / 2 =2Re{— - f — lnG(a)| 

(A12) 

==2Reln-

iitO 

n i l T71 

+2 1 ~ 

5(0) 

ddln 
z—rjei(pJ' 

-rjei<P3 
(A13) 

fv ' -rn 

or 

So for all allowed G(z) we have27 

/ 2 > 1 . 

(A14) 

(A15) 

27 Equation (A14) follows directly from Jensen's theorem. See, 
for example, E. C. Titchmarsh, The Theory of Functions (Oxford 
University Press, London, 1939), 2nd ed., p. 125. 
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Observing now that 

i r dt 

and 

1 r 

2TTJ_C 

- m | l + a 2 / 2 | = l n | l + a | 
1+t2 

1 r°° dt I -ln*=0, (A16) 
2TTJ_ 0 0 1+/ 2 

11 may be readily evaluated to give 

ln/1 = 21n{2[X+(l+a1)1/2]«i- • • 
[\+(l+any^}. (A17) 

So, finally, 

/>4X2[X+(l+a!)1 /2]2^- • -fr+il+an)1'*]*"* (A18) 

which proves the result. 
We note that it has not been necessary to make any 

assumptions on the existence of ff(d)dd. 
Let us now consider the case in which the cut in G 

FIG. 5. The integration contour for the 
integral Ii as given in the Appendix when 
the form factor has a cut starting at a 
point #=j3 to the left of the propagator 
cut. 

extends below x=l to a point x=fi>c. Ii remains the 
same as previously but I2 must now be evaluated by 
applying Cauchy's theorem to an integration around a 
contour T as shown in Fig. 5. Then 

0=lnG(0) 

if 
2iri J r 

lnG(s) 
-dz 

2iri J r z 

1 r ]nG(z) 

2irl •/unit© 

where 

•dz-{ ; 

z 2wi I 
disklnGO) 

So 

and 

1 min 

diskw {z) = w (z+ie)—w {z—ie). 

disklnGO) 
72=exp / 

I iri J /3 

= exp — - / 
I in J R 

-dz 

•dz, ( A 1 9 ) 

(A20) 

(A21) 

d i sk ing) 
-dz 

X4X2[X+(l+^i)1/2]2al- • •[X+(l+a„)1/2]2a». (A22) 

The bound now depends on the unknown function 
disk lnG(s) and so it cannot be fixed in the same precise 
manner as previously. 


